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We investigate various dynamic structure factors for harmonic and anharmonic chains. For harmonic chains
with mass disorder we find some unexpected features, such as a fine structure contributing to a central peak,
which is present also in the spatial spectra of the eigenfunctions. These results are contrasted with structure
factors of Lyapunov modes obtained for the disordered Lennard-Jones chain. For this nonlinear system the
static and the dynamic Lyapunov structure factors show opposite trends in their temperature dependence.
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I. INTRODUCTION

In recent years dynamical systems theory has contributed
to a considerable extent toward the understanding of the
foundations of statistical mechanics. Particular aspects con-
cern the understanding of fluctuations in equilibrium and
nonequilibrium systems �1�, or the link between transport
coefficients and properties of the underlying dynamical sys-
tem �2,3�. In addition, the concept of sensitivity, Lyapunov
exponents, and corresponding Lyapunov modes has been ex-
plored in molecular dynamics simulations, to uncover a new
view on hydrodynamic behavior �4–6�.

Here we are concerned with properties of the fluctuations
of a density

�w�x,t� = �
�=0

N−1

w��„x − q��t�… �1�

in simple dynamical systems. Depending on the nature of the
weights w� given to the particles with index � at positions q�,
an expression like Eq. �1� describes, for instance in molecu-
lar hydrodynamics, number density, mass density, or current
density �7�. In the context of Lyapunov analysis the weights
w� correspond to components of the Lyapunov vectors. Fluc-
tuations of such densities are usually captured by the two
point autocorrelation function

Cw�x − x�,t − t�� = ��w�x,t��w�x�,t��� , �2�

where the �canonical� average � . . . � may contain, e.g., a spa-
tial average as well in order to restore translation invariance
if a system of finite extent is considered. Quantities such as
the correlation function �2� and, in particular, its spatiotem-
poral Fourier transform Sw�k ,��

Sw�k,�� =
1

2�
� dtei�t 1

N �
�,��

�w�w��e
ikq��t�e−ikq���0�� �3�

and its static counterpart, given by

Sw�k� =� d�Sw�k,�� �4�

play a central role for the physics of fluids, solids, and dis-
ordered systems, from a theoretical as well as an experimen-
tal point of view �7�. For instance, such quantities are at the
heart of quantifying the glass transition �8,9�.

One of our goals is the investigation of densities which
are derived from the internal nonlinear dynamics of the sys-
tem. Lyapunov exponents and the corresponding Lyapunov
modes are one of the most important quantifiers for the sen-
sitivity and chaos in a dynamical system �4–6,10,11�. For
one-dimensional Hamiltonian systems with N degrees of
freedom, Lyapunov modes are vectors with components
	��p�

����t� ,�q�
����t�� ,�=0, . . . ,N−1
 which characterize per-

turbations of momenta and coordinates of reference trajecto-
ries in phase space. The growth rate is given by the corre-
sponding Lyapunov exponents ����, where we label by
�=1, . . . ,2N the exponents in decreasing order. It is known
that the time dependence of these modes is governed solely
by the time dependence of the reference trajectory
	�p��t� ,q��t�� ,�=0, . . . ,N−1
 �12�. Lyapunov modes, corre-
sponding to exponents which are small in modulus, show
hydrodynamic behavior in extended dynamical systems
when, for instance, translational symmetry prevails �6�.
Thus, it is tempting to study densities where the weights w�

are given by the corresponding components w�=�q�
����t� of

the �th Lyapunov mode �4,5�. The time translation invari-
ance expressed in Eq. �2� is still valid because the time de-
pendence of the weights is also governed by the Liouville
operator. In systems with spatial translational symmetry
some modes corresponding to Lyapunov exponents ���0�=0
associated with translational invariance are constant in time
and independent of the particle index �, i.e.,
��p�

��0��t� ,�q�
��0��t��= �0,c� �4,6,13�. If the mode number �

corresponds to the index of such a Goldstone mode �0 �14�
the dynamic Lyapunov structure factor S����k ,�� with
w�=�q�

����t� is proportional to the ordinary dynamic structure
factor S��k ,�� �w�=1�. This is one motivation for studying
ordinary dynamic structure factors as reference quantities for
the more general Lyapunov structure factors. As we aim at a
comparison of both quantities we restrict the current analysis
to Lyapunov structure factors where the weights are derived
from the spatial components of the Lyapunov vectors.
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Our main focus here is on simple spatially one-
dimensional systems in order to investigate properties of
generalized dynamic structure factors from a dynamical sys-
tems point of view. Of course, results already exist in the
literature, e.g., a classical investigation of the effect of ran-
domness on the dynamic structure factor �15�, or testing
mode-coupling theories in simple models �16�. There has
been renewed interest in those topics motivated by the treat-
ment of nontrivial lattice structures �17� and by fundamental
problems of glassy systems �18�. However, since even for the
very simple harmonic system no closed analytical form for
the dynamic structure factor can be written down, detailed
investigations were not possible without resorting to numeri-
cal computations or first order expansions, i.e., in the one-
excitation approximation. Despite the renewed interest in
simple model systems, it is surprising that the classic dy-
namic structure factor of the harmonic chain with disorder
has not been investigated in detail.

Here, we present an analysis of generalized dynamic
structure factors for simple one-dimensional models. Section
IV is concerned with harmonic chains and isotopic mass dis-
order. For comparison Sec. III reviews such a model with a
periodic structure. While for harmonic chains parts of the
analysis can be done by analytical means �cf., e.g., the ap-
pendixes� models with nonlinear interaction forces require
the application of molecular dynamics. In that context
Lyapunov modes play, of course, a nontrivial role. Section V
presents the discussion of a disordered chain with Lennard-
Jones interaction. We focus here in particular on a compari-
son between the �classic� dynamic structure factor and a
structure factor derived from hydrodynamic Lyapunov
modes. For the determination of the modes we resort here to
an orthogonal set, i.e., we employ the standard Wolf algo-
rithm for the computation �19�. Some computational aspects
are summarized in Sec. II, while the conclusion contains a
discussion of the findings and a selection of open problems.

II. MODEL SYSTEMS AND COMPUTATIONAL
ISSUES

We will consider chains of N particles with masses
m0 ,m1 , . . . ,mN−1 which are coupled by pair interactions. Two
different types of systems will be considered. The first model
is the simple harmonic chain with nearest neighbor interac-
tion where the Hamiltonian reads

Hharm = �
�

p�
2

2m�

+
g

2�
�

�q�+1 − q� − d�2. �5�

The ground state of the system is given by the configuration
q�=�d, �=0, . . .N−1 where L=Nd denotes the length of the
chain. Depending on the boundary condition the potential
may contain additional terms which are not stated in Eq. �5�
explicitly. Several boundary conditions will be discussed in
the subsequent sections namely, �i� periodic boundary condi-
tions q�=q�+N, �ii� fixed boundary conditions q−1=0 and
qN=0, and chains with �iii� open boundaries.

The second class of model we are going to consider is a
one-dimensional Lennard-Jones fluid

HLJ = �
�

p�
2

2m�

+ �
��	

U��q	 − q��� , �6�

where the interaction is mediated by the standard �truncated�
6–12 potential

U�r� = �4
�

r
�12

− �

r
�6� + Ucut if 0 � r  2.5�

0 else
� ,

�7�

where the constant Ucut ensures for continuity at r=2.5�. As
usual the parameter � determines the position of the mini-
mum of the potential at rmin=21/6�. If L denotes the length of
the chain and d=L /N the average distance of particles, then
a meaningful dimensionless density parameter is given by
�=rmin /d. For most parts of our investigations we will focus
on the case �=1, i.e., a system with nondegenerate ground
state where all particles are essentially located in adjacent
minima of the potential.

The computation of the dynamic structure factor for the
harmonic chain can be done partially by analytical means.
The main numerical task consists of diagonalizing the cou-
pling matrix and computing related spectral sums �cf. Appen-
dix A for some details�. Thus, systems of considerable size
can be treated even for models with a random mass distribu-
tion. In our numerical investigations we use harmonic chains
with N=1000 particles. A system of finite size shows tempo-
ral recurrences, which for harmonic chains are of order N. To
avoid such finite-size effects Fourier transforms have been
restricted to a finite time interval of length T�N�m̄ /g, with
m̄ being the average mass. The resulting spectrum is
smoothed by a Hann window, i.e., a weighted average over
neighboring frequency bins with weights 1/4, 1/2, and 1/4.
For fixed boundary conditions the recurrence time increases
by a factor four compared to systems with periodic boundary
conditions. Furthermore, fixed boundaries eliminate any
Goldstone mode.

The case of the Lennard-Jones fluid has to be treated dif-
ferently as the canonical average cannot be computed by
analytical means. Thus, one has to resort to molecular dy-
namics simulations which, in our case, limits the system size
to N=200 particles. The averages in Eqs. �2� and �3� are now
understood as microcanonical averages, which are calculated
numerically via averaging over time. The numerical integra-
tion is performed by the standard velocity Verlet algorithm
with step size 10−4�48m̄�2 /
. For preparing a state with
given temperature we choose random initial conditions in
configuration space and momenta according to a Boltzmann
distribution with temperature �−1 in momentum space. The
momenta are redistributed according to the Boltzmann dis-
tribution after 104 time steps and the process is repeated 100
times. After thermalization the fluctuations in kinetic energy,
i.e., in temperature are less than 1%. For the computation of
the Lyapunov spectrum and the Lyapunov vectors we use the
standard Gram-Schmidt reorthogonalization algorithm �19�.
Vectors are reorthogonalised each 1500th time step. We al-
low 107 time steps for the vectors to align along their intrin-
sic directions. We then choose a time span of 4�107 for the
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actual numerical computation of the dynamic structure factor
using normalized Lyapunov vectors. All the other numerical
issues are treated along the lines of the harmonic chain.

Finally, to get some more insight into the analytical struc-
ture Appendix B contains a brief discussion of the accuracy
of one-phonon approximations, in particular, within the con-
text of the harmonic chain where exact results beyond plain
numerical simulations are available.

III. HARMONIC CHAIN WITH ALTERNATING MASSES

We consider a chain of particles with alternating masses
m0 and m1. Given the analytical expressions derived for the
harmonic chain �cf., e.g., Eqs. �A1� in Appendix A� it is
natural to measure the wave number k in units of 1 /d and the
inverse temperature � in units of 1 /gd2. There are several
but equivalent choices for a time scale. If we denote by
m̄= �m0+m1� /2 the average mass per particle, the dimension-
less frequency � is measured in units of �g / m̄. Accordingly,
the dynamic structure factor will be rescaled by such a time
scale. In addition, the structure factor derived from the mass
density will be rescaled by m̄2 as well.

Let us first focus on a brief comparison of the dynamic
structure factors S��k ,�� and Sm�k ,�� for the number den-
sity and the mass density, respectively. Figure 1 contains
results for a system with periodic boundary conditions and a
mass ratio m0 /m1=8:1. On a large scale the results are quite

similar. In both cases the dispersion relation with acoustic
and optical branch is visible. In addition, higher harmonics
occur as well which are caused by the nonlinear dependence
of the structure factor on the phonon amplitudes. These
higher order branches cause a comb-like structure. Such
structures and the optical branch are more pronounced when
the number density is considered. On the one hand, the op-
tical branch derived from the structure factor of the mass
density shows minima in the intensity at about integer values
of k / �2��. On the other hand, the acoustic branch for the
number density seems to develop similar minima at half-
integer values.

Figure 2 illustrates the influence of different boundary
conditions on the dynamic structure factor. As one would
expect the result does not show a strong dependence on the
boundary condition. However, except for periodic boundary
conditions the structure factor displays some dispersionless
intensities �near ��1.2 and ��1.7 in Fig. 2�b�, and at
�=1.5 in Fig. 2�c��. Such structures relate to surface or eva-
nescent modes, i.e., exponentially localized eigenmodes of
the finite-size system. For open boundary conditions they
appear only, if a light particle is located at least at one of the
boundaries. These modes, of course, do not show up in a
system with periodic boundary conditions. In addition, the
system with open boundary conditions displays a central low
frequency peak which is related to fluctuations of the system
size. Many features just described are quite well captured by
standard one-phonon approximations �cf., e.g., Fig. 13 in Ap-
pendix B�.

So far we have considered a single value for the tempera-
ture. In fact, no qualitatively new features appear when
changing the temperature of the system. The dispersion
branches become blurred when temperature is increased, i.e.,
linewidths increase. For high temperatures, i.e., for ��10,
the dispersion branches are not visible any longer beyond the
first Brillouin zone. If the temperature is around �−1=1 the
average kinetic energy is so large that all but the linear dis-
persion �=c ·k for very low k values has disappeared, sig-
naling the speed of sound in the hot fluid. For even higher
temperatures the structure factor of noninteracting particles
is approached.

IV. HARMONIC CHAIN WITH BINARY MASS DISORDER

In order to discuss the impact of disorder we now analyze
a diatomic harmonic chain where particles with masses m0

FIG. 1. �Color online� Dynamic structure factors of a harmonic
chain of alternating masses with ratio of 8:1, temperature �=100,
and periodic boundary conditions: �a� mass density �Sm�k ,��,
weights w�=m��, �b� number density �S��k ,��, weights w�=1�. If
not stated otherwise, the same color coding is used in the other
figures.

FIG. 2. �Color online� Mass density dynamic structure factor Sm�k ,�� of harmonic chains of alternating masses for a mass ratio of 2:1,
inverse temperature �=100, and different boundary conditions: �a� periodic, �b� fixed, �c� open. Note the appearance of a central peak
��=0� in �c�.
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and m1 take random positions. For simplicity we confine to
situations where both types of particles appear in equal num-
bers. The study of such systems, in particular, with regards to
spectral properties, is of course a classical subject �20,21�.
Here we just briefly mention some features which are rel-
evant in our context. Figure 3 shows the density of states for
three different mass ratios m0 /m1. It is in fact well known
that the density of states tends toward a smooth distribution
for mass ratios smaller than 2:1, while the distribution shows
irregular behavior at higher frequencies for larger mass ratios
�22�. As expected, the high frequency component is related
with a localization phenomenon for the corresponding eigen-
modes �23�. One expects such signatures to show up again in
the dynamic structure factor.

We have seen in the previous section that boundary con-
ditions play a minor role for the computation of the dynamic
structure factor in a finite-size system. This is even more the
case for random chains because of the inhomogeneities stem-
ming from the disorder. We therefore focus on systems with
fixed boundary conditions. For the dynamic structure factor
we take an average over ten realizations of the disorder as
such a value seems to be a reasonable compromise between
numerical effort and the accuracy of the resulting graphs.

Figure 4 first compares data below and above the critical
mass ratio 2:1. For a subcritical mass ratio the structure fac-
tor displays a well defined smooth dispersion relation as one
would expect for a system with a continuous density of

states. The actual shape of the dispersion relation is qualita-
tively similar to a monoatomic chain. For a critical mass
ratio and beyond, the smooth dispersion relation still exists
for low frequencies but pronounced gaps appear at larger
frequencies in accordance with the structure of the density of
states �cf. Fig. 3�. In both cases, sub- and supercritical, the
dynamic structure factor for the mass density displays a cen-
tral peak at �=0 as well.

Unlike a chain with periodic mass distribution the random
system shows a substantial change when instead of the mass
density the number density is considered. Figures 4�c� and
5�b� display for comparison also the number density struc-
ture factor S��k ,�� for a supercritical mass ratio 4:1. In con-
trast to the mass density structure factor Sm�k ,�� the central
frequency peak is significantly reduced for S��k ,��. On the
other hand the higher frequency localized modes are more
pronounced when the structure factor is based on the number
density.

Let us have a closer look at the central peak which occurs
at �=0 for the mass structure factor. The numerical data can
be fitted quite well by a Lorentzian �cf. Fig. 6� over quite a
wide range of wave numbers. For very large wave numbers
the central peak broadens and interferes with other structures
of Sm�k ,��.

From the Lorentzian line shape the linewidth and the
spectral weight can be evaluated quantitatively �cf. Fig. 7�.
The linewidth shows a quadratic dependence on the wave
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FIG. 3. �Color online� Density of states for a harmonic chain with binary isotopic disorder for three different mass ratios m0 /m1: �a� 3:2,
�b� 2:1, �c� 4:1. Data have been obtained from averaging over 100 000 random permutations of a chain of length N=5000, with different
masses to occur with equal probability. The dotted red line shows for comparison the density of states of the corresponding periodic chain.

FIG. 4. �Color online� Mass density structure factor Sm�k ,�� of a binary disordered harmonic chain at inverse temperature �=1000 for
mass ratios �a� 3:2 �subcritical�, �b� 4:1 �supercritical, cf. Figure 3� and �c� number density structure factor S��k ,�� for mass ratio 4:1. The
data have been averaged over a sample of ten realizations.
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number while the spectral weight is essentially independent
of k. Some deviations are visible at integer values of k / �2��,
which can be attributed to interference with the dispersion
relation of the random system. Overall the observed depen-
dence of the central peak on frequency and wave number can
be expressed as

Sm�k,�� � ��k�2/���k�4 + �2� . �8�

Such an analytic expression points toward a diffusive process
�7,24�. The central peak is strongly reduced when the num-
ber density structure factor S��k ,�� is considered, a fact
which is plausible because S��k ,�� is by definition less sen-
sitive to mass density fluctuations which, e.g., are caused by
permutations of particles with different masses.

To gain a deeper insight into the nature of this central
peak, we compare the averaged structure factor from Fig.
4�b� with that of a single realization of mass disorder �cf.
Fig. 8�. It is clear that the continuous peak in Fig. 4�b� has
strong contributions from the superposition of many disper-
sion branches starting at k-values, which depend on the ac-
tual disorder realization �cf. Fig. 8�b��. Due to averaging
with respect to these realizations, or due to self averaging
�25� in the infinite volume limit of one realization, this fine
structure is smoothed out.

Interestingly this fine structure can already be detected in
the spatial power spectrum of the eigenmodes if ordered by
the eigenfrequency �see Fig. 9�.

The fine structure appears also for other boundary condi-
tions. To our knowledge the appearance of this fine structure
in S��k ,��, Sm�k ,��, and in the eigenfunctions of the disor-
dered harmonic chain has not been realized before. Note,
however, that similar fine structures had been observed also
in harmonic Fibonacci chains �17�. In both cases such struc-
tures correspond to phonon branches of various unit cells
approximating the quasi-periodic or random sequence of par-
ticles. For the random chains, at variance with the quasi-
periodic system with its long-ranged correlations, we do not
have a systematic build-up of structures as the system size is
increased. As can be seen from Fig. 9 such a mechanism
would result in a smooth profile in the thermodynamic limit.
Obviously this is one contribution to the intensity of the
central peak observed for the random chain.

V. LENNARD-JONES FLUID WITH BINARY MASS
DISORDER

So far we have considered systems with harmonic inter-
actions where the dynamic structure factor can be evaluated,
at least to some extent, analytically. We now focus on a chain
of particles with a Lennard-Jones-type interaction �cf. Eqs.

FIG. 5. �Color online� Dynamic structure factor of a binary dis-
ordered harmonic chain of masses with ratio 4:1 and temperature
�=100: �a� structure factor computed from the mass density, �b�
structure factor computed from the number density.

FIG. 6. �Color online� Central peak in the mass structure factor
as a function of the wavenumber. Symbols correspond to cross sec-
tions of the data shown in Fig. 5�a�, lines are numerical fits with a
Lorentzian.
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FIG. 7. �Color online� Linewidth and spectral weight of the central peak as a function of the wave number �cf. Figs. 5�a� and 6�. The
straight lines correspond to least square fits for low wave numbers with slope two and zero, respectively.
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�6� and �7�� where the correlation functions have to be evalu-
ated by molecular dynamics. Since the potential contains a
hard core repulsion the order of the particles is, in contrast to
the harmonic case, strictly preserved within the spatially one-
dimensional set up used here. Results for monoatomic chains
and its dynamical anomalies can be found in �26,27�. To
compare with the results of the previous sections we consider
here a random mass configuration where particles with
masses m0 and m1 occur with equal probability.

We will focus on cases where the density
�=rmin /d=21/6� ·N /L �see Eq. �7�� takes the value one. We
measure the inverse temperature � in units of 1 /
 and the
wave number k in units of 1 /d. The frequency � is measured
in units of �
 / �48m̄�2�.

Here we concentrate on the mass density dynamic struc-
ture factor Sm�k ,�� because it contains more information
compared to the number density dynamic structure factor. In
addition, due to the nonlinear nature of the system, it now
becomes important to consider also the dynamic structure
factor of the Lyapunov modes. We found recently that in a
diatomic chain of coupled maps, under the influence of mass
differences, the Lyapunov spectra and vectors split into
acoustic and optical branches �28�. Such a similarity to the
phonon case in response to mass discrepancies indicates a
possible relation between phonons and Lyapunov modes in
respect of representing collective motions of a high dimen-
sional system. We therefore investigate in some detail the
Lyapunov structure factor as well. The corresponding
weights w� in Eq. �3� are time dependent and we use a tem-

poral average in Eq. �2� to restore time translation invari-
ance. From the computational point of view we evaluate the
spatial Fourier transform of the density �w�k , t�, Eq. �1�, and
compute the structure factor as the absolute value of the tem-
poral Fourier transform, applying the Wiener-Khinchin theo-
rem. In that respect the chaotic dynamics of the nonlinear
system accelerates the speed of converge of thermodynamic
averages. Two kinds of Lyapunov structure factors, dynamic
ones S����k ,�� and its frequency integral Eq. �4�, the static
ones, will be compared with the mass dynamic structure fac-
tors Sm�k ,��.

Figure 10 shows a comparison between the mass dynamic
structure factor and the dynamic Lyapunov structure factor
for different temperatures, density �=1, and mass ratio
m0 /m1=4:1. For the latter structure factor we have chosen a
Lyapunov mode with mode number �=196 in a system with
N=200 particles, i.e., 400 modes. Such a mode corresponds
to a small but positive Lyapunov exponent as the mode num-
ber is close to the center of the Lyapunov spectrum where the
exponent vanishes because of symmetries. One expects such
a mode to be relevant for the hydrodynamic properties of the
dynamic system as the corresponding Lyapunov exponent is
small in modulus �4,5�.

For low temperatures, say ��10, the dispersion relations
are clearly visible in the dynamic structure factor and in the
dynamic Lyapunov structure factor �Fig. 10�. For the latter

FIG. 8. �Color online� �a� Mass structure factor of a binary
disordered harmonic chain of N=1000 particles at inverse tempera-
ture �=1000 with mass ratio 4:1 for a single disorder realization
�cf. 4�b� for an average over 10 realizations�. �b� Detailed view of
the fine structure for small wave numbers.

FIG. 9. �Color online� Spatial power spectrum of the eigen-
modes as function of the eigenfrequencies for a binary disordered
chain of �a� N=200 and �b� N=1000 particles �periodic boundary
conditions, mass ratio 4:1�.

FIG. 10. �Color online� Dynamic structure factors of a Lennard-
Jones chain of N=200 particles with binary disordered masses with
ratio 4:1, density �=1, and increasing temperatures: �a,c,e� dynami-
cal structure factor of the mass density, �b,d,f� dynamical Lyapunov
structure factor for mode number 196. Inverse temperatures: �a,b�
�=100, �c,d� �=10, and �e,f� �=1.
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the dispersion relation is even more pronounced and the spa-
tial structures are better defined for small length scales. The
structure factors are qualitatively similar to the harmonic
chain �cf., e.g., Fig. 5�. However, the slope of the dispersion
relations at low wave numbers shows a dependence on the
temperature which is not surprising for the ordinary dynamic
structure factor, since in a nonlinear system one expects the
speed of sound to depend slightly on the temperature. The
slopes obtained from least square fits of the dynamic struc-
ture factor and of the dynamic Lyapunov structure factor
shown in Fig. 10 read �a� 3.41�0.02 and �b� 3.51�0.02
��=100�, �c� 3.75�0.02 and �d� 4.19�0.05 ��=10�, and �e�
6.43�0.02, and �f� 5.80�0.2 ��=1�.

Most significantly, there does not appear a central peak in
the dynamic Lyapunov structure factor contrary to the dy-
namic structure factor based on the mass density. Further-
more, the dynamic Lyapunov structure factor seems to be a
symmetric function for wavenumbers 0k2�. For high
temperatures, say �=1 �see Fig. 10�f��, where the kinetic
energy per particle becomes comparable in size to the poten-
tial energy, the dispersion branches disappear because of
large linewidths. In addition, the dynamic Lyapunov struc-
ture factor loses its symmetry and becomes featureless, as is
also true in general for very high k-values. All these features
do not seem to depend strongly on the mass ratio.

Figure 11 shows the static Lyapunov structure factor for
different temperatures, the same density and mass ratio as in
Fig. 10, and for different mode number, i.e., as a function of
the Lyapunov exponent. Such a feature adds an additional
facet to our analysis. Compared to the dynamic structure
factor and dynamic Lyapunov structure factors, a different
tendency of temperature dependence can be clearly seen

from the figure. For low temperature, say �=100 and �
=10, no dispersion relation can be identified from the static
Lyapunov structure factors. With increasing temperature a
linear �-k dispersion emerges gradually, as can be seen from
Figs. 11 and 12. The observed difference in the temperature
dependence can be intuitively understood in the following
way: the frequency � in dynamic �Lyapunov� structure fac-
tors represents an oscillating feature which characterizes the
harmonic part of the system dynamics, while the Lyapunov
exponent � represents a typical expansion time scale which
characterizes the complementary anharmonic, chaotic part of
the system dynamics. With increasing temperature, the an-
harmonicity of the system dynamics is enhanced which leads
to the gradual emergence of a linear �-k dispersion in the
static Lyapunov structure factors. With decreasing tempera-
ture the system dynamics approaches the harmonic limit and
therefore the �-k dispersion becomes more pronounced in
the dynamic �Lyapunov� structure factors. Further investiga-
tions are required to uncover a quantitative relation between
the two dispersion relations.

VI. CONCLUSION AND DISCUSSION

Dynamic structure factors probe for the density excita-
tions in particle systems. Thus, properties of such correlation
functions may depend strongly on the special density under
consideration. Such an aspect can be already illustrated by
the harmonic chain as seen in Sec. IV, where the intensity of
the low frequency peak depends on whether the mass or the
number density has been considered. We therefore concluded
that in the present context the peak is partially related to the
diffusive motion of localized mass excitations.

FIG. 11. �Color online� Static Lyapunov structure factors of a Lennard-Jones chain of N=200 particles with binary disordered masses
with ratio 4:1, density �=1, and increasing temperatures. Inverse temperatures: �a� �=100, �b� �=10, �c� �=1 and �d� �=0.1 �cf. as well
Fig. 12 for a detailed view�.
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The concept of a Lyapunov structure function is able to
uncover completely new aspects in random nonlinear sys-
tems. Such a structure factor behaves differently compared to
the more traditional concepts as can be seen, e.g., from the
unexpected symmetry properties computed in Sec. V. How-
ever, to judge the relevance of Lyapunov densities, further
systematic large scale simulations are required. For instance,
the dependence of the dynamic Lyapunov structure factor on
the Lyapunov mode number in the hydrodynamic regime has
to be investigated further. The Wolf algorithm used in the
determination of the Lyapunov modes yields an orthogonal
basis in the relevant subspaces and the algorithm is relatively
easy to apply. But such modes are normally different from
the covariant splitting in dynamical systems. Recently, effi-
cient algorithms have been developed to estimate the cova-
riant basis system �29� but such algorithms are computation-
ally still quite demanding.

To proceed even further, analytical investigations of
simple linear systems could be useful. For instance, one
could address the relevance of Lyapunov modes within the
context of harmonic disordered chains with moderate nu-
merical efforts. It would be tempting to explore whether
closed analytical expressions can be derived. At least the
application of straightforward one-phonon approximations
might be appropriate tools to capture the essentials of the
corresponding dynamic structure factor. Furthermore, one
could focus on other integrable system, like the Toda chain,
where it is likely that analytical expression for the dynamic
structure factor might be accessible. In addition, such models
could reveal the relevance of different types of excitations,
i.e., plane waves and solitons, for the Lyapunov density fluc-
tuations. With regards to disordered Lennard-Jones chains
we concentrated here on the case with density �=1. Such a
value is special in the sense that the zero temperature equi-
librium positions of the particles are close to the minima of
the interaction potential. A systematic study of the density
dependence, although numerically quite demanding, seems
to be tempting, in particular, since a change in density may
trigger degeneracies of the ground state. Altogether, the
Lyapunov structure factor is likely to be a useful tool to get
further insight into how dynamical systems theory can con-

tribute to the foundations of nonequilibrium statistical me-
chanics.
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APPENDIX A: HARMONIC CHAIN

The spatial Fourier transform of the density correlation
function �2� yields the intermediate scattering function
Fw�k , t�. For systems which violate translation invariance,
e.g., for the case of non-periodic boundary conditions, we
consider an additional spatial average so that Fw�k , t� is de-
fined by

Fw�k,t� =
1

N
�
�,	

w�w	 exp�ik�� − 	�d�

�exp	− k2��u��t� − u	�2�/2
 . �A1�

Here u�=q�−�d denotes the deviation of the particle from its
ground state position, and we have used the fact that such a
variable is normally distributed when the average � . . . � with
respect to the canonical ensemble is considered. The tempo-
ral correlation functions which appear in the exponent can be
evaluated easily using the linear equations of motion.

Using vector notation u� = �u0 ,u1 , . . . ,uN−1�T and
p� = �p0 , p1 , . . . , pN−1�T the equations of motion determined by
the Hamiltonian �5� read

u�̇ �t� = M= −1p� �t�, p�̇ �t� = − G= u� �t� , �A2�

where M�	=m���,	 denotes the diagonal inertia matrix and

G�	 = g�2��,	 − ��,	−1 − ��,	+1 + ���0,0 + �N−1,N−1�

+ ���0,N−1 + �N−1,0�� �A3�

abbreviates the matrix of the force constants. Its precise form
depends on the chosen boundary conditions, i.e.,

0 0.1 0.2
k

max

0

0.1

0.2

0.3

0.4

λ(α
)

β=100
β=10
β=1
β=0.1

(b)

FIG. 12. �Color online� �a� Static Lyapunov structure factor and �b� �-k dispersion relation of a Lennard-Jones chain of N=200 particles,
with binary disordered masses with ratio 4:1 and density �=1. Note that �a� is an enlargement of the panel �d� of Fig. 11 to show the linear
dispersion.
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� = �− 1 open

0 fixed, periodic
�, � = �− 1 periodic

0 fixed, open
� .

�A4�

With the standard transformation

ũ� = M= 1/2u� , p̃� = M= −1/2p� , G̃
=

= M= −1/2G= M= −1/2 �A5�

one can cast Eq. �A2� in normal form

u̇̃� �t� = p̃� �t�, ṗ̃� �t� = − G̃
=

ũ� �t� . �A6�

The positive semi-definite matrix of the force constants can
be diagonalized by an orthogonal transformation Q

=

G̃
=

= Q
=

T�2
=

Q
=

, �A7�

where the diagonal matrix ��	=����,	 contains the eigen-
frequencies of the system. Thus, integration of Eq. �A6� be-
comes a trivial task and the solution reads

u� �t� = M= −1/2Q
=

T�cos��= t�Q
=

ũ� + �= −1 sin��= t�Q
=

p̃� � . �A8�

For systems with periodic or open boundary conditions the
total momentum is preserved and the frequency matrix con-
tains a vanishing eigenvalue. In such a case the Moore-
Penrose pseudo inverse for �= −1 has to be considered as such
a choice corresponds to a center of mass coordinate system.
This matrix solution has been introduced in �30� for the case
of fixed boundary conditions.

The computation of the correlation function in Eq. �A1�

��u��t� − u	�2� = �u�
2� + �u	

2 � − 2�u��t�u	� �A9�

is now straightforward. The normal coordinates �Q
=

ũ� �� and
�Q
=

p̃� �	 are independent Gaussian variables with zero mean
and variances 1 / ����

2� and 1 /�, respectively �cf., e.g., Eq.
�A6� and the Hamiltonian �5��. Thus, the expression �A8�
yields for t=0

�u�

2� = �
�

��M= −1/2
Q
=

T����2

���

2
=

�G= −1���

�
, �A10�

where we have used the identity

�
�

�M= −1/2
Q
=

T����M= −1/2
Q
=

T�	�

��

2
= �M= −1/2

Q�
T
�=

−2
Q
=

M=
−1/2��	

= �G= −1��	, �A11�

which follows immediately from the definitions �A5� and
�A7�. For the time-dependent part of Eq. �A9� we obtain by
a similar reasoning

�u��t�u	� = �
�

�M= −1/2
Q
=

T����M= −1/2
Q
=

T�	�

���

2
cos���t�

=
�G= −1��	

�
− 2�

�

�M= −1/2
Q
=

T����M= −1/2
Q
=

T�	�

���

2

�sin
2���t/2� . �A12�

Combining Eqs. �A10� and �A12� we arrive at the final result

��u��t� − u	�2� =
1

��G= −1��� + �G= −1�		 − 2�G= −1��	

+
4

�m�m	
�
�

Q��

sin2���t/2�
��

2 Q�	� .

�A13�

As already stated above, for periodic and open boundary
conditions the pseudoinverse of the frequency matrix has to
be adopted, i.e., vanishing frequencies have to be excluded
from the sum. Equations �A1� and �A13� constitute the result
for the intermediate scattering function. Evaluation just re-
quires the �numerical� diagonalization of the rescaled inter-
action matrix, cf. Eq. �A7�. The dynamic structure factor is
then obtained by Fourier transformation. Of course, for
simple mass configurations further simplification of the ex-
pression is possible.

For the static case, i.e., for the static structure factor
Fw�k ,0�, just the stationary correlation enters. That expres-
sion depends on the interaction only

��u� − u	�2� =
1

�
��G= −1��� + �G= −1�		 − 2�G= −1��	�

�A14�

as one expects to be the case for a classical thermodynamic
average since phase space integrals factorize. Thus, any mass
disorder does not affect the static structure factor. The static
correlation �A14� can be easily evaluated from Eq. �A3� for
different boundary conditions

��u� − u	�2� =
�� − 	�

�g
� �1 open

1 − �� − 	�/N periodic

1 − �� − 	�/�N + 1� fixed
� .

�A15�

Therefore, the static structure factor for constant weights can
even be evaluated in closed analytical form.

APPENDIX B: ONE-PHONON APPROXIMATIONS

Even for the harmonic chain the intermediate scattering
function �A1� is anharmonic since the amplitude correlation
function appears in the exponent, due to the nonlinear depen-
dence of the density �Eq. �1�� on coordinates. For analytical
purposes one may use expansions in terms of amplitude cor-
relations, i.e., in terms of Fourier amplitudes. We will esti-
mate the accuracy of such standard first order expansions
within our setup.
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There are in fact different ways to implement such an
expansion. One may expand in such a way that the leading
term reproduces the Debye-Waller factor

exp�− k2��u��t� − u	�2�/2�

= exp�− k2���u�
2�� + �u	

2 ��/2��1 + k2�u��t�u	� + ¯� .

�B1�

If we just focus on a first order, i.e., on a one-phonon ap-
proximation, the time-dependent part of the intermediate
scattering function �A1� reads

Fw
�DW��k,t� =

k2

N
�
�,	

w�w	 exp�ik�� − 	�d�exp�− k2/2��u�
2�

+ �u	
2 ����u��t�u	� . �B2�

Using Eq. �A12� such an approximation may be simplified
further

Fw
�DW��k,t� =

k2

�Nd2�
�

����k��2

��
2 cos���t� , �B3�

where

���k� = d�
�

w�

�m�

exp�ikd� − k2�u�
2��Q�� �B4�

denotes the spatial Fourier transform of the appropriate
eigenmode of the system. Performing the Fourier transform
�for a finite-size system with an appropriate regularisation�
one obtains the dynamic structure factor in closed form

Sw
�DW��k,�� =

�k/��2

2��Nd2�
�

��� − �������k��2. �B5�

In order to get an estimate of the accuracy of the one-
phonon approximation �B3� we compare such an expression
with the numerically exact result discussed in Sec. III. Figure
13 shows the one-phonon approximation for a binary peri-

odic harmonic chain with mass ratio 2:1. We have evaluated
the sums for a system with finite size N=1000 and have
computed the temporal Fourier transform numerically �see
Sec. II for a few details�. As the Debye-Waller factor di-
verges for a chain in the thermodynamic limit such contribu-
tions have been discarded when evaluating the sums in Eq.
�B3�. We obtain nonvanishing values, of course, only for
frequencies covered by the dispersion relation. The disper-
sion relation itself is clearly reproduced but other aspects of
the dynamic structure factor �cf. Fig. 2�c� for the numerical
exact result� are hardly reproduced. In particular, most of the
background structure visible in Fig. 13 seems to be due to
the boundary conditions and thus should be largely consid-
ered to be a numerical artifact.

The previous one-phonon approximation may be im-
proved when the expansion of the time-dependent exponen-
tial is performed in such a way that the exact static structure
factor is recovered in leading order

exp	− k2��u��t� − u	�2�/2
 = exp�− k2��u� − u	�2�/2�	1

+ k2��u��t� − u��u	� + ¯
 .

�B6�

Then to first order the intermediate scattering function �A1�
reads

Fw
�S��k,t� = Fw�k,0� +

k2

N
�
�	

w�w	 exp�ik�� − 	�d�

�exp�− k2��u� − u	�2�/2���u��t� − u��u	�

= Fw�k,0� −
2k2

�Nd2�
�

��

sin2���t/2�
��

2 �B7�

when we use Eqs. �A10� and �A12� and the abbreviation

FIG. 13. �Color online� Debye-Waller approximation for the dy-
namic structure factor of a harmonic chain of alternating masses
with ratio 2:1, temperature �=100, and open boundary conditions
�cf. Eq. �B5��. The approximation yields finite values only for fre-
quencies covered by the dispersion relation and the eigenmode in
the spectral gap is clearly visible �cf. Fig. 2�c� for the exact result�.

FIG. 14. �Color online� Static approximation for the dynamic
structure factor of a harmonic chain of alternating masses with ratio
2:1, temperature �=100, and open boundary conditions �cf. Eq.
�B7��. The approximation yields finite values only for frequencies
covered by the dispersion relation and the eigenmode in the spectral
gap is clearly visible �cf. Fig. 2�c� for the exact result�.
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�� = d2�
�	
� w�

�m�

exp�ikd��Q���� w	

�m	

exp�− ikd	�Q�	�
�exp�− k2��u� − u	�2�/2� �B8�

which, apart from the contributions by the Debye-Waller fac-
tor, coincides with the intensity of the mode Eq. �B4�. The

result of such an approximation is shown in Fig. 14. Com-
pared with the previous result and with the numerically exact
data, Fig. 2�c�, the approximation yields quite an improve-
ment as now some structures beyond the linear dispersion
branches are reproduced. Thus, it seems to be important that
the one-phonon approximation preserves the correct static
structure factor.
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